2.直流漏电保护断路器基本设计思路
传统的AC型漏电保护断路器,之所以能够检测漏电信号是因为该漏电信号是交流信号,因此可以通过磁场感应出次级绕组电压。针对直流漏电保护断路器,基本思路就是人为叠加一个交流信号在传感器上,就可以借鉴AC型漏电保护断路器的漏电电流检测方法,最后检出直流漏电信号,以此为基础设计硬件电路。由于直流漏电保护断路器的漏电流采样方法不同于AC型,且市面上并未有相应的专业漏电检测芯片,同时本文设计的直流漏电保护断路器在外观上取消试验按钮的设计,而增加指示灯作为产品正常运行(绿灯常亮)或故障状态(红灯闪烁)的直观指示,同时原来的试验按钮位置改为拨码开关,相应的位置分别对应只报警不脱扣、报警且脱扣两种执行方法,方便用户根据实际使用情况动态的选择,而不是一旦选定某种型号就一成不变,其中基础报警方式为红灯闪烁,因此本文设计的直流漏电保护断路器以单片机为控制核心,其典型的功能框架如图所示。单片机根据特定的逻辑算法进行处理,实现直流漏电保护断路器的实时运行状态显示和系统自诊断功能,其中直流漏电流传感器由电源、互感器、方波激励源、低通滤波器、绝对值电路和放大电路组成。
3.直流漏电检测方法
直流漏电流采样电路如图所示,其设计思想在于以激励方波电压为载体,通过磁环在采样电阻Rs上感应出电压,显然该电压值与激励方波电压和Rs电阻存在必然的联系。当磁环中存在直流漏电流时,该直流电流会产生一个恒定的磁场,与磁环固有的磁性叠加,反应在采样电阻Rs上的电压就是相对于Y轴有固定的偏移,其偏移的方向取决于直流漏电流的方向。基于图二原理图,开展数学推导且方波激励电压的傅里叶展开只含奇次谐波分量,当磁环中存在直流漏电流I0时,得到采样电阻上得到的绕组电流I_leak仅含有直流分量和奇次谐波分量,并且直流分量正比于直流漏电电流I0。数学公式的推导也从侧面证实了该设计的可行性,要想得到直流漏电流信号,就需要通过合适的低通滤波器将高频分量滤除。由于直流漏电电流有正负方向,而对于漏电保护断路器而言,关注的重点是漏电流的大小而不是方向,因此还需要通过合适的信号调理电路,才能送到单片机的AD转换引脚,信号调理电路包含低通滤波电路、绝对值电路和放大电路。
4.单片机触发可控硅
本设计基于单片机开展具体的硬件电路设计,不同于传统的AC型漏电检测芯片54123,其内部差分运放输出端4脚和锁存器5脚连接,当锁存器高电平维持一定时间才将7脚电平拉高,以此触发可控硅,且触发后锁存器电平释放掉,使得配电线路排除故障后可以再次合闸;若直接由单片机IO口触发可控硅,从可控硅触发极电流和触发极电压大小考虑是满足要求的,但可控硅在导通瞬间是通过强电流的,为避免强电流对单片机IO口的冲击,需要在单片机IO口和可控硅之间加上隔离电路如常用的光耦,从成本上考虑,本设计采用三极管,其电路原理图如图所示。选择一款刚上电时所有的IO口默认为高电平的单片机即可,此时S9013三极管导通,可控硅SCR的触发极电平几乎为0,直流漏电保护断路器处于正常合闸状态;当检测到直流漏电流信号时,通过程序将单片机IO口SCR_ON设置为0电平,此时S9013三极管截止,可控硅SCR的触发极电平几乎为12V而触发,此时线圈Coil通过大电流使得直流漏电断路器脱扣,起到保护作用。